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Classical lattice gases consisting of structureless particles (with spin) have 
been quantized by introducing a kinetic energy operator that produces 
nearest-neighbor hops. Systematic quantum corrections for the partition 
function and the particle distribution functions appear naturally as power 
series in X = flh2/2ml 2 (13 -1 = kBT, m is the mass, l is a distance related to 
lattice spacing). These corrections require knowledge of certain particle 
displacement probabilities in the corresponding classical lattice gases. 
Leading-order corrections have been derived in forms that should facilitate 
their use in computer simulation studies of lattice gases by the standard 
Monte Carlo method. 
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1. I N T R O D U C T I O N  

Classical  lat t ice gas models  were or iginal ly  devised to clarify the na ture  o f  
phase  t ransi t ions.  (1,2~ They offered several a t t rac t ive  advantages .  Since a 
general  i somorph i sm had  been es tabl ished between Ising models  and  lat t ice 
gases, (2,3> it was possible  to  d raw upon  exact  results avai lable  for  the two- 
d imens iona l  Ising model .  (4's/ Even in three dimensions,  where c losed- form 
results  for  Ising models  are  not  yet  known,  lat t ice gas models  admi t  a wider  
range  o f  app rox ima te  par t i t ion  funct ion evaluat ions  than  exist for  the  
under ly ing  " c o n t i n u u m "  models .  (6~ Recently,  lat t ice gases have also p rov ided  
compu ta t i ona l  advantages  in digi tal  compute r  s imula t ion  o f  coopera t ive  
phenomena .  (v 

The last  few years  have witnessed a t rend  t oward  use o f  classical lat t ice 
gas models  to s tudy relat ively compl ica ted  molecular  fluids, most  no t ab ly  
water .  (8,9> I t  seems l ikely tha t  o ther  hydrogen-bond ing  substances (ammonia ,  
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hydrogen halides, the alcohols, hydrogen cyanide, malononitrile, etc.) might 
also be similarly modeled. But with light hydrogen atoms present, quantum 
corrections to the classical partition function doubtless become significant. 

It is the aim of the present paper to develop a systematic formal procedure 
for generating lattice gas quantum corrections. In the interests of simplicity 
and clarity, attention will be confined to models with structureless particles, 
for which the quantum corrections refer to translational motion. Having done 
this, the procedure for incorporating other molecular degrees of freedom 
(such as rotation) is straightforward. We intend to devote a subsequent 
publication to lattice gas quantum corrections for water. (1~ 

Fully quantized lattice gases have been examined before, as models for 
liquid helium. (11-1a~ There, of course, the emphasis lay on the ground state 
and low-lying excited states. No effort was made to generate the high- 
temperature expansions derived here. 

2. BASIC DEF IN IT IONS 

Let c~ index the ~ sites forming the regular lattice. A fixed number N < f~ 
of particles inhabit these sites, and can jump from site to site. The single- 
occupancy constraint applies: At most one particle can occupy any given site. 
The particles have spin S, but are otherwise structureless. 

A localized state for particle j to be on site aj with spin component aj 
will be denoted by the symbol 

IJ; ~J, aj> (1) 

These states are assumed to be normalized: 

<J; ~,;, ,,J I J; '~ ,  a~> = a(~;, ,~) a(a;, a~) (2) 

By employing the permutation operator P for the particles 1 ..... N, we can 
construct a suitable complete set of N-particle basis functions (al .... , aN 
distinct): 

iV 

[a, al ..... an, an} = (N])-1,2 ~ (+_ 1)e I- ~ I/; ap,, aej) (3) 
P ] = 1  

with bosons using the upper sign, fermions the lower sign. 
It will be convenient to introduce creation and annihilation operators 

for each site, a + (a, a) and a(a, a), along with the associated number operator: 

+ S  

n(c 0 = ~ a+(c~, a)a(a, a), n2(~) = n(a) (4) 
0"= - -S  
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for the space of single-occupancy states (3). The basic commutation relations 
are(13) 

[a(~j, @, a (~ ,  ~)]  = 0 
[a(~j, ~j), a+ (~ ,  ~) ]  = [1 - 2n(~3] ~(~j, ~ )  ~(~j, ~ )  (5) 

The single-occupancy constraint also requires 

a(%, aj)a(c% a~) = 0 (6) 

Using these relations, one sees that a+(~j, crj)a(a~, cry) acting on a given state 
(3) gives zero unless site aj is empty and site ~ contains a particle with spin 
a~; in that event the particle is shifted to aj and has its spin changed to aj. 

Following established convention, the lattice gas Hamiltonian operator 
will be written 

H = T + V (7) 

where T and V represent kinetic and potential energies, respectively. The 
kinetic energy operator T will have the following form [defined only on the 
space of states (3)]: 

T = ~ T~ (8) 
c ~ = 1  

T~ ; ~ 2n(~) - ~ ~ a+(~, ~)a(~', ~) (9) 

This provides a finite-difference version of  the usual Laplace operator. Here 
m stands for particle mass, z is the lattice coordination number, and I is an 
appropriate length comparable to the lattice spacing b. 2 The cd summation in 
Eq. (9) covers the z nearest neighbors of site a. 

In the following development, the potential energy operator V will be an 
arbitrary function of the site occupation numbers n(c0, but we will require 
that it be independent of particle spins. Contributions both from inter- 
molecular forces and from external fields (such as gravity) can be present in 
V simultaneously. 

The lattice gas partition function is 

Z = Tr[exp(-f lH)] ,  fl = (k~T) -~ (10) 

where the trace is calculated over the complete set of N-particle states (3). 
Quantum corrections to Z arise due to particle identity and to the fact that 
T and V do not commute. We shall define the "classical l imit" partition 
function Zo to be 

Zo = lim Z (11) 
m..-~ co 

2 For the linear, square, and simple cubic lattices, l equals the nearest-neighbor spacing b. 
For the body-centered cubic lattice, l = 2b/3 ~12. The cubic and hexagonal close-packed 
lattices in three dimensions and the planar hexagonal lattice require l = 2b. 
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This limit obviously removes T from the problem altogether. Aside from 
trivial spin factors, Z0 adopts the familiar classical lattice gas form 

Z0 = (2S + 1) N ~ '  exp{-pV[n(1) ..... n(f2)]} (12) 

wherein the interaction can be treated as a c-number. The primed summation 
in Eq. (12) includes all sets of numbers n(a) = 0, 1 subject to 

n(~) = N (13) 

Distribution functions P(~)(~I ..... ~) may also be introduced. 

P("?(a 1 ..... a,) = Z -1 Tr exp(- f iH n(~j) (14) 

These quantities give the probabilities that all sites c~1 ..... c~, in a given set are 
simultaneously occupied. Following Eq. (I1), 

lira P(~) = Pp) (15) 
m--~ co 

will represent the classical limit distribution functions. The corresponding 
analog of Eq. (12) will be 

P(o")(al ... . .  ~ )  = Z f f  1(2S + 1) N ~' exp(-/3V) ~ n(a,)  (16) 
j = l  

(n)  1 It is our task to derive corrections to Z0 and the Po 'n the form of series 
in ascending orders in m-1. 

3. E L E M E N T A R Y  E X A M P L E  

Before examining the full problem with N interacting particles, it will be 
profitable to study a simple case in detail. Specifically we shall now consider 
a single particle moving on a linear lattice (f~ sites with separation b = l; 
see footnote 2), with periodic boundary conditions. 

The energy spectrum is easy to determine: 

~(k) = (h2/m12)[1 - cos(k/)] (17) 

where the wave vectors k are 

k = 27rs/f~l (18) 

[(o§ 1 s = 0 ,  +1, +2 ..... + int ~ - 1 (19) 

(plus f~/2 if f~ is even) 
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Due to particle spin, each k value should be reckoned as occurring 2S + 1 
times. 

The partition function is 

Z = (2S + 1 ) ~  e x p { - ( f l h 2 / m l 2 ) [ 1  - cos(k/)]} (20) 

Of course we have 

Z0 = (2S + 1) ~ 1 = (2S + 1)~2 (21) 
k 

If  the number of sites f2 is large, the k values (18) become sufficiently 
closely spaced that the k sum in Eq. (20) passes into an integral: 

f 
~zll 

Z = (2S + 1)(~)l/2rr) d k  e x p { ( / 3 h 2 / m l 2 ) [ c o s ( k l )  - 1]} 
~' -rill 

where Io is the modified Bessel function<14~: 

X 2 X 4 X 6 

I o ( x )  = 1 + 22 0 !)------- ~ + 2~(2!)-------- ~ + 26(3!) ~ + (23) 

Thus we can also write 

l n Z  = l n Z o  - 2 X  + X 2 - � 8 8  ~ + ~ X  6 - (ll/192)X 8 +..-  (24) 

with 

X = 13h2/2ml 2 (25) 

serving as the natural dimensionless expansion parameter for corrections to 
the leading "classical" term In Z0. 

Since 

I o ( x )  ~ (2~rx) -1/2 exp(x) (26) 

as x --> ~ ,  we find that in the low-temperature limit, expression (22) reduces 
to 

Z ~ (2S + 1)f21(Z~rm/13h2) 112 (27) 

This agrees precisely with the partition function for a particle able to move 
c o n t i n u o u s l y  along a line of length f2l. The agreement is hardly surprising, 
since low temperature entails wavelengths in the eigenfunctions which span 
many lattice spacings. 

The fact that spectrum (17) is bounded above, whereas that for the 
continuum problem is not leads to qualitative disparity between the two in 
the high-temperature limit. The same situation applies in the more general 
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multidimensional N-particle lattice gas. However, our main interest lies in 
the way that density variations (at a given temperature) cause varying quantum 
corrections in the equation of state and distribution functions, and for this 
purpose the boundedness of the spectrum is largely irrelevant. 

4. BULK T H E R M O D Y N A M I C  PROPERTIES 

We return now to the general N-particle lattice gas. Its partition function 
Z provides the free energy F: 

Z = exp(-flF) (28) 

and F in turn can be used to calculate other bulk thermodynamic properties 
by standard manipulations. For this reason it is desirable to develop In Z in a 
series in the dimensionless parameter X defined in Eq. (25). 

We shall employ the following operator expansion(15~: 

fo exp[-/~(T + V)] = Go - X dA1 Co(Az)tGo(1 - Az) + ... 

f: . . . . .  

+ ( - x ) -  da~ da~ ... dX. G0(a~)t 

x G o ( A 2 ) t  . . .  G o ( A ~ ) t G o ( 1  - Az . . . . .  A~) 

+...  (29) 

where again X stands for ~h2/2ml 2, and 

G0(a) = exp(-~/3V), t = (~/X)T (30) 

Reference to Eqs. (8) and (9) shows that t is independent of X and/3, so Eq. 
(29) is properly arranged in ascending orders in X. 

Define 

(y:fo . . . . .  

D,(/3) = ( -  1)"Zo z Tr dA1 dA2 ... dA. 

Go(An)tGo(1 - A~ . . . . .  A~)} (31) Go(A1)tGo(A2) • 9 Q D  

Then by inserting expansion (29) into Eq. (10) we have 

Z =  Z o [ l +  ~ Dj(/3)X s] (32) 
j = l  

For the usual technical reasons connected with N dependence of the terms 
generated, it is advisable to transform Eq. (32) into an expansion for 
In Z = -/3F: 

In Z = In Zo + 2 A,(/3)X" (33) 
r~=l  
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The leading-order cumulants A. are related to the D~ thus: 

Az = D1 

A2 = D2 - �89 2 
Aa = 3a - h 2 h z  + �89 s (34) 

A4 -- 34  - D s h z  - �89 2 + D2(D~) 2 - �88 ~ 

The structure of the general cumulant may be written as follows: 

A~ = ~ (-1)X, , -1  n s - 1 ] [(Ds)'~,/nfl] (35) 
{nj} 

Having formally generated series (33), we consider its leading terms in 
detail. The quantity A~ = Dz is trivial to evaluate. Using the cyclic invariance 
property of  the trace, one has 

A~ = -Z0-  ~ Tr[t exp(-flV)] (36) 

Since V is diagonal in the basis (3), only the diagonal parts of t in that basis 
can contribute to A1. One has 

t = zn(a) - a+(~, ~)a(~', ~) (37) 

Hence [the zn(~) terms are the diagonal parts] 

DI = Ai = - Nz (38) 

In evaluating the second-order quantity D2 (as part of A2), diagonal 
processes are important again, but with two t's present it is also possible to 
step a particle into an empty neighbor site and back again. The specific 
expression to be evaluated is 

( (.z lq-al  "~ 
D= = Zo* Tr~Jo dal Jo dh2 tGo(A=)tG0(1 - h2) ) 

= Zo  1 T r { ~  dh 1 hltG0(1 - hl)tGo(az)} (39) 

where again we have used cyclic invariance of  the trace, then integrated by 
parts. One readily verifies that the diagonal contributions give 

Z o l ( N z ) 2 T r [ f ;  d ~  ~Go(1)]  = �89 2 (40) 

which will cancel a corresponding term in A2 [see Eq. (34)]. 
The more significant second-order contribution, involving particle hop 

and return, requires detailed consideration of the local particle arrangements. 
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Fig. 1. Particle motion incorporated in the second- 
order quantum correction D2 [Eq. (39)]. 

Figure 1 should aid in clarifying the situation. It shows a portion of a square 
lattice gas, with particle 1 the one whose transfer is of interest. Obviously a 
neighboring vacancy must be present to receive this particle, which will not 
always be the case. Even if it is, a change AV in the system potential energy 
can be involved. For the shift illustrated in Fig. 1, particle 1 has three nearest 
neighbors to begin with, but only two after the shift. If  nearest-neighbor 
interactions alone were present in V, this clearly would suffice to determine 
AV, but with more general interactions greater detail about local structure 
would be required. 

In order to analyze these second-order nondiagonal contributions 
properly, it is advisable to carry out the full trace summation indicated in 
Eq. (39) in several stages. Specifically, we distinguish terms according to 
which pair c~1, a2 of sites is involved, and according to what A V magnitude 
occurs in the intermediate (i.e., displaced) state. Thus, accounting for result 
(40), we write 

A2 = Z~ 1 ~ d~tl 11 Tr{a+(c~l, a)a(c~2, a)Go(1 - A~) 
~IPC~2,G 

x a+(a2, cr)a(c~t, a)Go(A1)} 

= Zg ~ ~,  dt l  a~ exp[-(1 - a~)~ • Tr exp(-~V) 

" I N  

wherein S stands for the Kronecker delta function. Here we have assumed 
that only a finite, discrete set of AV values can arise (this will be the case if 
interparticle interactions have strictly finite range, and if the external field 
potential is linear in position coordinates). 
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Let Qr ~ ;  A V [ ~2, ~,) denote, for the classical limit ensemble, the 
probability that simultaneously (a) site a, is occupied, (b) a specific nearest- 
neighbor site ~2 is unoccupied, and (c) that shift of the particle from c~ 1 to c~2 
causes the total potential energy to change by A V. A formal expression for 
Q~o 2~ is the following. 

Qr ~2; A V [ e2, cq) 

A 2 = 

where 

( 
= Zo  1 Tr~exp(-f lV) n(az)[1 - n(a2)] 

In the event that external forces are absent and periodic boundary conditions 
are applicable, QCo2> is independent of  the specific location of the site pair 
~ ,  ~2 within the system. 

Upon comparing definition (42) with the preceding A2 expression (41), 
one sees that the latter can be written compactly in terms of Q(o 2>. One finds 

fo t~l, ar2,AV 

Q<o2'(,~, ,x2; A v ] c,~, ~0f(/3 A v)  (43) 

1 (  e X - 1 )  1 ~ x +  1 ~ (44) 
f ( X )  = x 1 +  x = 2  ~-4x . . . .  

Sincef(x) is a monotonically decreasing function of x, its presence in Eq. (43) 
biases the particle excursions toward regions of  lower potential energy. 

Notice that A2 is never negative. Consequently it will have the effect of 
reducing the free energy F in comparison with the classical-limit value Fo. 
This reduction is associated with the tendency of T to broaden the distribution 
of energy states in the system. 

The types of contributions that can be present in third order (i.e., in Da) 
depend on the topology of  the lattice. The smallest polygons of nearest- 
neighbor links present on the square, simple cubic, and body-centered cubic 
lattices are quadrilaterals. Three successive shifts cannot circumnavigate such 
paths. For these lattices only a combination of diagonal contributions and 
one-particle, two-step excursions (as in D2) is possible. In fact, one can show 
that the third-order semiinvariant Aa appearing in Eq. (34) will vanish for 
these lattices. 

In contrast, the planar, cubic, and hexagonal close-packed lattices 
include triangular circuits. For them it is necessary to examine the two 
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(a) (b) 

Fig. 2. Third-order processes possible on lattices with triangular circuits of nearest- 
neighbor shifts. (a) The single particle 1 completes the triangular circuit and returns to 
its starting point. (b) Particles 1 and 2 change places after three shifts (of 1, 2, then 1 
again). 

processes illustrated in Fig. 2. Figure 2a represents a triangular circum- 
navigation by a single particle, which returns in three successive steps to its 
starting point. Figure 2b illustrates an exchange process for which the three 
successive steps (by 1, then 2, then 1 again) result in a permutation of the 
positions of 1 and 2. In order for this exchange to occur, the spins el and e2 
must be identical. 

To evaluate the contributions of these third-order processes to In Z, as 
well as to examine more complex higher order processes, it is advisable to 
generalize Q(02~, Eq. (42), to the set of s-step quantities 

Q(o~)(al, ~zl'; AVII "'" 1%, %'; AVyl "'" I%, as') (45) 

As before, these are shift probabilities to be evaluated for the classical-limit 
ensemble (subscript zero). The requirements mandated by (45) are that: (1) 
site ~1 be filled, 41' neighboring it be empty, and that when the 41---> a~' 
particle shift is carried out the potential energy changes by AVe; (2)... ; (j) 
after the precedingj - 1 steps, ~j should be filled and its neighbor ~j' empty, 
and the subsequent aj--->%' shift should change the potential by AVj; 
(j  + 1) .... The Q(0 ~) will only be defined for sets of shifts which restore the 
particles finally to the original sites or some permutation thereof. Conse- 
quently there is no need to indicate AV, for the last shift, since it is auto- 
matically given by 

8--1  

A V =  - ~ AVj (46) 
y = l  

For notational simplicity we can let n(J)(~) stand for the number of par- 
ticles at site ~ after j shifts specified above have been completed. A general 
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expression for Q<o 8) may then be introduced, as an average in the classical- 
limit ensemble: 

Q~o8)(~1, ~1 , 
$ 

= (2S + 1)nZo 1 ~ '  exp[-flV({n})] I-'I n<J)(%')[ 1 - n(J)(a/)] 
{n} j = 1 

x 3[AVs, V({nCJ)})- V({n(S-1)})] (47) 

One easily verifies that the prior equation (42) is equivalent to a special case 
of Eq. (47). 

We are now in a position to state the In Z contributions (for the planar 
close-packed and the fcc and hcp lattices) symbolized in Fig. 2. One obtains 
for Fig. 2a the result 

1~ = ~ ~ QCo3)(al, ~2; AV~Ia2, %; AV=la~, ~)F(~ AV1, t~ AV2) (48) 
~i,~2,~3 AVI,AV2 

where 

fo f -  fo F(x, y)  = dA1 d~2 dA 3 exp[-  ~2(x + y) - ~tsx] 
~'0 

= x l [ ~ + y +  (1  x+l  ) 1 - e x p ( - x - Y ) x + y  l - e x p ( - x )  l x _ y  J 

(49) 

In a similar way, the third-order exchange contribution illustrated in Fig. 2b 
is found to be (upper sign for bosons, lower for fermions) 

Ib = +(2S + 1) -1 ~ ~ Q~o3)(az, a2; AV~I~, ~1; ZXV~I~, ~ )  
C~1,~2, r 3 A V I , A V 2  

• Z r'l,/3 (50) 

Therefore the total third-order cumulant for two- and three-dimensional 
close packed lattices will be 

As = I~ + Ib = ~,  ~,  F([3 A Va, ~ A V2) 
0~1,0~2,g 3 AV1,AV 2 

x [Q<oS)(a~, a2; AV~la2, a3; AVzla3, aa) 

+ (2S + 1)-~Q~03)(a~, a2; AVlla3, a~; AV2Ia2, %)] (51) 

The one-particle excursion quantity 1~ will never be negative and (as 
was the case with A2) it tends to reduce the free energy. The exchange 
quantity 1~ reduces free energy for bosons, but raises it for fermions. 

Fourth-order corrections for the In Z could be calculated along the lines 
already established, using the classical-ensemble quantities Q~a). However, 
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the calculations begin to become rather tedious, and we do not reproduce 
them here. In addition to the types of terms thus far encountered, one must 
consider pairs of distinct particles which, by virtue of closeness, have separate 
but correlated hop-and-return motions. 

5. D I S T R I B U T I O N  F U N C T I O N S  

We now have the task of generating corrections in ascending orders in 2" 
for the distribution functions defined in Eq. (14). The operator expansion (29) 
is again the proper starting point. Having inserted it in both numerator and 
denominator (Z) in expression (14), we have symbolically 

P("~(a~ . . . . .  ~ . )  = pg,~(~ .... , ~ )  1 + E?:~ N ~ ( ~  .... , ~ ) x ~  
1 + ~ ~  1 D i X  j 

= P(o")(gl ..... ff~){1 + [Ei")(ffl ..... ~ 0  - D1]X  

r E( . ) ,  ff + L 2 L ~ ..... ~,) DzEi'~}(~,.. . ,  ~,~) - D~ + (D~)2IX 2 

+ [~?~ - D~E~" + ( - D ~  + -~(D~)~)E? ~ - D3 

+ 2D2D~ - (D1)3]X a + ...} (52) 

For emphasis, bars have been placed over labels referring to the n fixed sites. 
Just as Eq. (31) serves to define the Dj, the quantities E} ") have the form 

E}'(ffl ..... ~ )  ( - 1 ) ~ Z g ~ T r ( s  I ~ d A ~ . . . [  1 - ~  
1k1-1 

= dAj 
t , . d O - - = ' O  

x G0(A~)t .-. Go(aj)tG0(1 - a~ . . . .  Aj) =~n(8~) (53) 

Since it is normally the case that f~ is very much larger than the distribution 
function order n, we can expect wholesale cancellation between D's and E's 
in each term of the expansion (52). 

It is easy to see that in the absence of external fields every E[ ~) is identical 
to D1. Consequently the O ( X )  correction terms vanish identically for each 
distribution function. 

Nontrivial corrections begin to arise in the next order. To evaluate 
partition-function corrections in second order, it was necessary that the 
quantities QCo2) be defined; now a generalization must be sought which 
includes the requirement that sites ~ ..... ~ be occupied. Anticipating a 
corresponding demand for higher orders, we shall write the following symbol 
for the most general ease: 

Q,o~,-,@~,..., ~,}1~, ~ ; ;  AV I ... I~, ~j) (54) 

to denote the classical-limit probability for existence of the specified s-step 
transformation, under the restriction that sites ~ ..... ~, are initially occupied. 
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As before, the same set of sites must be occupied throughout the lattice at the 
end of the s steps as at the beginning (though possibly with particle ex- 
changes). It should be borne in mind that particles on ~1 .... , ft, might them- 
selves be moved about. A formal definition of the quantity (54) follows that 
shown in Eq. (47), except for an insertion of I-i n(g~): 

" AVll ..-1%, ~;) Q(o~,")({~ ..... ft,}]a1, c% , 

= (2S + 1)NZg ~ ~ '  exp[-flV({n})] n(gz) ~ n<"(%) 
{n} y = i 

x [1 - n(J~(%-')] 3[AVj, V({n(J~}) - V({n(J-~))] (55) 

By straightforward calculation one establishes that O(X 2) corrections to 
the P~o "~ can be expressed in terms of Q~o 2) and Q~o 2,~. The result is 

E(z")(~l ..... fiN) - D2 = ~ f(fi AV)[Qp,'({ff~ ..... g,}lal, a2; AVla2, c%) 

- Q(o2~(a~, a2; AV[e2, c%)] (56) 

The function f is the same one encountered earlier, Eq. (44). 
As was the case for bulk thermodynamic properties, the existence of 

O ( X  3) corrections for the P(f> is contingent upon presence of triangular paths 
on the lattice. Square, simple cubic, and body-centered cubic lattices, being 
devoid of such paths, permit no third-order corrections. However, the close- 
packed planar and three-dimensional lattices do generate third-order P(") 
corrections, which one finds to have the following form: 

E(3n)(~ .... , fin) - D~E~'~ ..... ft.) - D3 + D2Dz - �89 3 

~1,~2,~8 AV1,AV 2 

x {[ Q(o3,')({ff~ ..... <}[az, a2; AV~Ia2, aa; AV2]c%, a~) 

- Q(g~(~, ~ ;  AV~I~, ~ ;  aV~[~., ~)] 

+ (2S + ~)-~[Q(g,"~@~ .... , %}1~, ~ ;  aVl[~ ,  ~ ;  avalon, ~)  

- Q'g~(~, ~ ;  avalon, ~ ;  a v ~ [ ~ ,  ~)1} (57) 

6. D I S C U S S I O N  

The preceding development has shown that quantum corrections to 
lattice-gas thermodynamic properties and distribution functions require 
knowledge of the s-step probability functions Q~o ~ and Q~o~,% In the event that 
only short-range intermolecular forces are present, each of these functions 
can always be expressed in terms of a finite set of classical-limit distribution 
functions Po ("~, the maximum order of which equals the number of sites 
influenced by the s-step excursion. In most cases of interest the required 
P0 ~"~ will not be known precisely, though it is not inconceivable that suitable 
approximations might be constructed. 
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The present results likely will find their most fruitful application in 
connection with computer studies of lattice gases by the Monte Carlo 
method37,16,17~ The requisite excursion probabilities could be evaluated 
numerically during the course of such Monte Carlo studies, and the computa- 
tion of low-order quantum corrections could then become a routine appen- 
dage to the conventional classical simulation. 

Even without implementing a full-scale numerical program, it is possible 
to draw some qualitative conclusions about lattice-gas quantum corrections. 
The two-step process required for A2 [Eq. (43)], whose probability is deter- 
mined by Q(o 2~, will be quenched as the system is compressed toward complete 
filling of the lattice with particles. This compression removes vacant sites 
which are required for the hop and return. Recall that A2 reduces free energy 
F; since the reduction will thus be less at high density than at low density, 
A2 will tend to produce faster increase in the system pressure with com- 
pression than would be the case with the classical lattice gas alone. 

Similarly, Q(o 2,"~ will vanish in the high-compression limit, in the analo- 
gous correction (56) for the distribution functions. Partial quenching of the 
hop-and-return motion obviously also occurs if the n particles in P("~ must 
reside on n tightly packed sites if1,..., if=. Thus second-order quantum correc- 
tions destabilize tight particle clusters. 

The exchange processes involved in Aa [Eq. (51)], and the corresponding 
third-order correction [Eq. (57)] for the Po (=~, will likewise be quenched by 
compression to the close-packed limit. But in addition, exchanges will be 
inhibited at low density as well since most particles will be isolated. We also 
remark that the existence of large, repulsive intermolecular forces (hard cores 
spanning many lattice sites) can suppress exchange since many successive 
steps would be required to interchange particle locations. It is this last 
situation essentially which causes quantum exchange corrections to the 
continuum hard-sphere virial coefficients to vanish exponentially at high 
temperature.(ls,19) 

Finally we point out that at the critical point for the classical lattice gas 
with short-range interactions, the quantum corrections A2 for F0 should 
manifest the same critical singularity type that is exhibited by the (classical) 
energy per particle. Such a correction is symptomatic of a simple shift in the 
critical point temperature and density, rather than of exponent renormaliza- 
tion.(2o~ 
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